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Sign-time distributions for interface growth
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We apply the recently introduced distribution of sign-times~DST! to nonequilibrium interface growth
dynamics. We are able to treat within a unified picture the persistence properties of a large class of relaxational
and noisy linear growth processes, and prove the existence of a nontrivial scaling relation. A critical dimension
is found, relating to the persistence properties of these systems. We also illustrate, by means of numerical
simulations, the different types of DST to be expected in both linear and nonlinear growth mechanisms.
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The notion of persistence, or the statistics of first pass
events, has been a powerful conceptual tool in studying
chastic non-Markovian processes in many research area
physics, engineering, statistics, and applied mathematics
this Rapid Communication we apply a persistence-rela
concept, the distribution of sign-times, or DST~defined be-
low!, to the problem of kinetic surface roughening in no
equilibrium interface growth dynamics@1#. We believe that
the ideas, described in this paper, could become an extre
useful conceptual and practical tool in characterizing surf
growth dynamics, rivaling the dynamic scaling ideas c
rently used in studying kinetic surface roughening. Depe
ing on the specific issues of interest, our proposed DST te
nique may actually be more powerful and informative th
the currently fashionable dynamical/roughness/growth ex
nent based characterization of dynamical surface morph
gies.

One of the main themes in the theory of nonequilibriu
interfaces is grouping the interface roughening phenom
within ‘‘universality classes’’. This classification of sce
narios is based on calculating the dynamic scaling prope
of the surface correlation function@1#. On the other hand, in
non-equilibrium interface growth experiments, one mig
also be interested in morphology stability issues which ca
fact be formulated as first passage type questions: what is
probability that a mound~or crevice! will survive as a mound
~crevice! for a given period of timet? How does this prob-
ability decay in time, etc.? These type of questions, howe
are not simply delineated by such a correlation function.

Another open theoretical problem is to establish a co
spondence between discrete solid-on-solid~SOS! models and
continuum Langevin equations beyond the equality of ex
nents. For example, based on structure factor measurem
the authors in Ref.@2# claim that the SOS model they intro
duced does not only belong to the same universality clas
the noisy Mullins equation but it is describedexactlyby it.
Our approach proposed in the present Rapid Communica
~which isnot based on direct measurement of the correlat
function! supports that claim.

It would be useful, therefore, to study statistical quantit
that are directly sensitive to the structural and morpholog
properties of interfaces~e.g., formation of mounds! and to
the dynamics of these structures~e.g., coarsening!. In this
PRE 601063-651X/99/60~2!/1115~4!/$15.00
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Rapid Communication, we propose that such informat
may be inferred from the DST, which has recently been
troduced in the context of the persistence properties
simple coarsening systems and the diffusion equation@3,4#.
First passage time or persistence problems have been
focus of intensive research for the past few years, produc
a series of analytic and numerical results with applications
the Ising and Potts models@5#, the diffusion equation@6#,
phase ordering@7#, interface kinetics@8#, etc. and experi-
ments on liquid crystals and soap froths~see the references i
@6#!. The central issue of persistence concerns the probab
of an eventneveroccurring~up to a certain timet). It is very
restrictive by definition, and good statistics from numerics
experiments may be extremely hard to obtain. The rece
introduced@3,4# DST is practically more accessible, and as
limiting case produces the persistence probability.

The DST is essentially a histogram performed on the s
of the fluctuations and simply measures the probability of
fluctuations having been in the positive domain for a to
time t in the given timet of the process. Obviously fort
5t we obtain the usual persistence probability, which
denote byP1(t), and fort50 we obtain the probability of
the fluctuations havingnever been in the positive domain
i.e, to have beenalwaysin the negative domain,P2(t). The
distinction between the persistence of fluctuations in
positive domain and in the negative domain becomes imp
tant in the case of nonlinear models@9#. We shall refer to
these as ‘‘positive’’ and ‘‘negative’’ persistence, respe
tively.

The sign-time for an interface on ad-dimensional sub-
strate is the stochastic variable defined by

T~x,t !5E
0

t

dt8H„h~x,t8!…, ~1!

where H is the Heaviside step function andh(x,t) is the
height of the interface measured with respect to the aver
height. Sinceh is a random variable~due to its coupling to
the noise! the sign-time will be described by a probabilit
distribution, the DST. For a system with translation inva
ance, the statistics oft will not depend on the locationx, and
so the DST may be written as
R1115 © 1999 The American Physical Society
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S~t,t !5^d~t2T„0,t…!&, ~2!

where^•& indicates the average over the noise. Some pr
erties ofS are~i! it is defined on the interval 0<t/t<1; ~ii !
for interface growth withh˜2h symmetry,S will be sym-
metric aboutt/t51/2; ~iii ! the tails of the distribution give
the persistence probabilities:P2(t)5*0

edtS(t,t) and
P1(t)5*0

edtS(t2t,t), where e!t is a microscopic time
scale~of the order of the fastest temporal scale in the int
face dynamics!. These probabilities are expected to have
power law decay, defining the corresponding persistence
ponentsu6 : P6(t);(e/t)u6, and ~iv! the shape ofS con-
tains information about whether the growth is rare ev
dominated or not.

In the spirit of Ref.@8# we first consider the following
class of stochastic linear equations:

] th52n~2¹2!z/2h1j, ~3!

with flat @h(x,0)50# initial condition, wherej is a general
noise term that may represent the ‘‘pure deterministic’’ ca
via the choicej(x,t)5d(t)h(x,t) or the regular ‘‘noisy’’
case withj(x,t)5h(x,t), whereh is a Gaussian-distribute
noise possibly with spatial correlations. We consider the
lowing three choices forh: ~1! white noise with correlator
^h(x,t)h(x8,t8)&52Dd(x2x8)d(t2t8), ~2! volume con-
serving noisê h(x,t)h(x8,t8)&522D¹2d(x2x8)d(t2t8),
and ~3! long range spatially correlated nois
^h(x,t)h(x8,t8)&52Dux2x8ur2dd(t2t8), r,d. For ex-
ample, the Edwards-Wilkinson~EW! model may be recov-
ered by settingz52 in Eq.~3!, and by applying white noise
likewise, the noisy Mullins equation corresponds to sett
z54 @1#. We write Eq.~2! through the higher moments o
DST as

Sd
(z)~t,t !5 (

n50

` E
2`

` dv

2p
eivt

~2 iv!n

n!
^@Td

(z)~0,t !#n&, ~4!

where we have introduced a frequency representation of
d function, and expanded in powers of the sign-timeTd

z . We
shall enter into no technical details here on how to proc
with calculating the moments of the DST. We present o
the final form that we obtained for thenth order moment
normalized bytn @mn[^(t/t)n&#

mn5)
k51

n E
0

1dak

2p E
2`

` dsk

ek1 isk
expS 2(

j ,l
s js lk~aj ,al ! D ,

~5!

where the limits ofek˜01 are to be taken, and

k~x,y!5H ~x1y!2g, deterministic case

E
0

min(x,y)

du~x1y22u!2g, noisy case,

~6!

with 0<x,y<1, andg being given by~1! g5d/z for the
deterministic case and for white noise,~2! g5(d12)/z for
volume conserving noise, and~3! g5(d2r)/z for long-
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range correlated noise. We make the following observati
from Eqs. ~4!–~6!. First, the DST obeys the exact scalin
form

Sd
(z)~t,t !5

1

t
FgS t

t D , 0<t<t, ~7!

for all values oft (mn is t independent!. Second, the ‘‘mate-
rial parameters’’n andD do not appear in the DST. Third
the three numbers (d,z,r) appear in the DST~for any t) only
through their combination ing5g(d,z,r). Thus, the persis-
tence exponents~which are contained within the DST! will
also only depend ond, z, and r through the exponentg.
@This appears to be implicitly understood in Ref.@8#, where
persistence is measured as a function of the growth expo
b5max„0,(12g)/2….# A similar scaling property for the per
sistence exponents is also true for the deterministic case

For simplicity of the notation, instead ofSd
(z)(t,t) ~and

ud
(z)) we will use Sg(t,t) ~and ug). Let us consider as an

example the generic case of white noise, for whichg5d/z.
According to the above, for any model for which, e.g.,d/z
50.5, the DST~and thus the persistence properties! will be
identical to that for the EW model in one dimension. W
compared the numerically obtained DST’s for$1,2% ~mean-
ing d51, z52) and $2,4% . According to the above, one
should observe identical DST’s. The$1,2% DST was mea-
sured using a standard discretization scheme, see Fig.~a!.
The numerical integration of the case$2,4% is less straight-
forward. We used the simplest discrete scheme for mode
the operator¹4 in d52, as more sophisticated schemes we
actually less stable under the influence of additive wh
noise. A very small integration time step ofdt50.01 was
used to ensure stability. We observed a long transien
which the DST was actually concave, in contrast to the c
vex DST for the case$1,2% (d51 EW model!. After 103

iterations the DST began to turn over, and eventually set
into a convex shape, closely matching the$1,2% DST. This
illustrates the sensitivity of the DST to lattice effects, whi
may be a very useful property if one is investigating phys

FIG. 1. DST’s for ~a! $1,2% ~thick line! at t50.253(23103)
obtained on a grid ofL52048 sites and averaged over 23103 runs;
$2,4% at t50.013256 ~dots!, and t50.0134096 ~thin line!, on a
grid of 102431024 shown for a single run,~b! the SOS large cur-
vature model~diamonds! on a lattice ofL5104 at 8192 steps, av-
eraged over 100 runs; and for$1,4% measured on a grid ofL
52048 sites att50.053(23103), and averaged over 23103 runs
~continuous line!. Due to the symmetry property~ii ! the DST’s are
shown only in the half rangexP@0.5,1#.
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which is itself sensitive to the underlying lattice. In Fig. 1~b!
we show the DST’s obtained from numerical integration
the case$1,4% ~thed51 noisy Mullins equation! and numeri-
cal simulation of the SOS large curvature model@2#. These
two models are expected to have very similar properties,
indeed their DST’s are almost indistinguishable.

It follows from Eqs. ~4!–~6! that the knowledge of the
second momentm2 uniquelydetermines the value ofg, and
therefore alsoz ~in a given dimensionality!. It is possible to
evaluate analytically the second momentm2. We find m2
51/22G(g), where for the deterministic case

G~g!5
g

4pE0

1

da
12a

11a F S 11a

2a1/2D 2g

21G21/2

, ~8!

and for the noisy case

G~g!5
1

2pE0

1

da

3arctanA ~4a!12g

@~11a!12g2~12a!12g#2
21. ~9!

The second moment in both cases is a monotonic functio
g and therefore the knowledge of one determines the othe
property useful in deciding whether a measured DST
indeed be described by a process like Eq.~3!. For example,
one may obtain from numerical or experimental measu
ments a symmetric DST, from which one may computem2.
One cantesttherefore if the process generating the measu
DST can be described by Eq.~3!: one determinesz using the
above procedure, and then simulates Eq.~3! with the corre-
sponding value ofg, thus generating a new DST. If the tw
DST’s are very close or coincide, then the assumption
the physical process may be modeled by Eq.~3! is valid, just
as in the SOS large curvature model case, shown in Fig. 1~b!.
Note, that this procedure also requires an assumption a
the type of noise.

The integral in Eq.~6! is divergent forg.1 at x5y.
Introducing a microscopic lattice cut-off, the DST can
calculated@10# to give a Diracd function centered around
t5t/2

Sg~t,t !5
1

t
dS 1

2
2

t

t D , for any g.1. ~10!

It is a well known result@1# that for Eq.~3!, d5du5z is an
upper critical dimension and separates interfaces that are
ymptotically rough from those which are asymptotica
smooth. Thus, the fact that for dimensions abovez there is no
roughening, is reflected by ad function DST, i.e.,all points
of the interface will spend exactly half of their time abo
the mean height. The persistence exponent in this case i
really defined, since the persistence probability is zero. I
lattice model, one would expect corrections to scaling to
above result, and for the persistence probability to de
exponentially with time. When approachinggu[du /z51
from below, the persistence exponent diverges;g5gu being
a marginal case for which no numeric or analytic results h
been produced yet~on persistence properties!. It is precisely
f
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the case of the two dimensional EW equation with wh
noise. Note that the EW equation in any integer dimens
(d>1) with volume conserving noise is in the smooth pha
and would therefore have ad function DST (g511d/2),
with the persistence exponent undefined~or formally infi-
nite!.

From the scaling relation~7! one can infer the existenc
of a new critical ‘‘dimension’’g* both for the deterministic
and noisy cases: since the tails of DST give the persiste
probability, which has a power law decay (P6;t2u), the
scaling functionFg must obey the behaviorFg(x);xu21,
for x!1, and 12x!1 in order that Eq.~7! be satisfied. For
u,1 the DST has integrably divergent tails while foru.1
the tails vanish~as xu21). In the former case the sites ar
more likely to be found in a positive or negative persiste
state~i.e., with a height that did not change sign at all!, while
in the latter case persistent sites will be an absolute mino
~with vanishing measure ast˜`). Sinceug is a monotoni-
cally increasing function ofg the equationug51 will be
satisfied at a unique value ofg* . At this valueFg* is flat at
the tails: it neither falls to zero nor diverges. This shows t
the value ofug* [ud*

(z)
51 is special. It is possible thatFg*

can still have some structure aroundt/t51/2, but the sim-
plest possibility is that it is a top-hat function. In this ca
m251/3, and thereforeg* can be calculated after~numeri-
cally! inverting G(g)51/6, using Eqs.~8! and ~9!. For the
deterministic case one obtainsg* 517.983. . . , and for the
noisy caseg* 50.438 . . . . Infact, exact bounds exist@8# for
the relation betweenb and u from which we find thatg*
<0.36. . . . Therefore our approximate value ofg* lies
above the bound, which implies that at criticality~namely,
u51), the DST, although having flat tails, still has nontrivi
structure aroundt5t/2. For the noisy case, our numeric
simulations are compatible with 0.25,g* ,0.5, as can be
seen from Fig. 2. It is interesting to note that the perman
presence of noise ‘‘brings down’’ this criticalg* to a sub-
unitary value as compared to the deterministic case.

The DST for g50 is exactly known, and is called th
‘‘arcsine law’’ in the mathematical literature@11#: F0(x)
51/@pAx(12x)#, which can also be derived from Eqs.~4!–
~6! presenting an alternative to this venerable old proble
Figure 2 summarizes our findings on the different regim
for the DST of the noisy case of Eq.~3! with the two critical
‘‘dimensionalities’’ g* andgu .

We shall now present and briefly discuss the numerica
obtained DST’s for two nonlinear systems:~1! the one di-

FIG. 2. Behavior of DST as a function ofg for Eq. ~3!, with
white noise. Each inset shows the functionFg(x) vs x. For g
50.25 andg50.5 we simulated the Langevin equation with whi
noise in one dimension atz54 andz52, respectively. Forz52 the
simulation parameters were the same as for the thick line in
1~a! and forz54 they were the same as for the continuous line
Fig. 1~b!.
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mensional KPZ equation, and~2! the Das Sarma-
Tamborenea~DT! SOS model with Schwoebel barriers. Fi
ure 3~a! shows the KPZ case at different times and with tw
different noise types~Gaussian and bimodal!, using the dis-
cretization scheme introduced in Ref.@12#. For the case of
Gaussian noise one can see that the DST satisfies the ge
scaling form ~7! but with an asymmetric scaling functio
F(x) since theh˜2h symmetry is broken, reflecting th
nonlinear character of the KPZ equation. The DST for
case of bimodal noise has a different shape to that for Ga
ian noise, which was still evolving for the largest times w
observed (t;104), indicating either very long crossove

FIG. 3. ~a! DST for thed51 KPZ equation with white noise a
t5512, t51024 and for bimodal noise att52048.~b! DST for the
SOS DT model with Schwoebel barriers att5103 steps shown for
three different values of the parameterpu , which is the probability
for an atom to attach to a lower step. The system size waL
5100, and the averaging was made over 23104 runs for each
curve.
eral

e
s-

times, or else a more complicated scaling form. Figure 3~b!
shows the DST obtained numerically from the DT mod
with Schwoebel barriers@13#. This system is highly nonlin-
ear, exhibits mound-formation and coarsening. The D
mirrors all these morphological and structural characterist
Nonlinearity is obvious from the asymmetric shape. T
right end of the curve has the highest value, meaning that
sites are most likely to be found in a positive persistent st
i.e., they belong to structures that stayed above the m
height all the time, namely,stable mounds. On the contrary,
the left end, when compared to the right one, is in the m
nority, showing that thestable crevices, or valleyswill con-
tain only a small fraction of the sites, which points to
mounded morphology with high skewness. The fact tha
site has a small probability to survive for a long time in
crevice, means that the valleys tend to disappear during ti
evolution, i.e., there must becoarsening. This shows the in-
timate connection between the coarsening and persist
properties of a interface morphology, which is the topic o
separate, forthcoming publication.

In summary, the DST proves to be very sensitive to
details of the morphological dynamics, and can provide c
cial information on the nonequilibrium interface fluctuation
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